JOURNAL OF INTEGRATIVE NUTRITION
INTERVENTION DESIGN
Evaluating the Effect of Celery on Hashimoto’s Thyroiditis: A Randomized Trial Study Design
Hollywood JB & Twayana M
FIRST PUBLISHED
2025-02-01
Article:
-
Can be printed.
-
Can be downloaded.
-
Can NOT be distributed.
ABSTRACT
Trial Design: Celery (Apium graveolens L.), a potent antioxidant high in D-limonene and nitrates, is documented to alter neuro-immune-endocrine mechanisms through various intracellular processes in thyrocytes, hepatocytes, and gastrointestinal bacterial signaling. Stress-related immune factors implicated in autoimmune thyroid diseases include reactive oxygen and nitrogen species, elevated cytokines, and autoantibody activity. Case reports indicate celery powder (CP) provokes hyperthyroidism. If CP can induce a hyperthyroid state, it may manage Hashimoto’s thyroiditis (HT). This study aims to develop a trial design to investigate the effects of celery, D-limonene, and nitrates, on thyroid function.
Methods: The proposed study is a randomized-comparative, single-blind, 3-arm, parallel-pilot study using 39 HT patients, randomized into three groups of thirteen. Group 1 (GCS) participants will drink 1-2 cups (120-240 mL) of pureed celery stalk (5-10 g), Group 2 (GCP) participants will drink a comparison solution of 1-2 cups of concentrated citrus peel tea (2-3 tsp dried), Group 3 (GS) participants will drink a placebo solution of starch (0.25 g) mixed with 1 cup of water. Primary endpoints and laboratory tests will be tested every 30 days to include measuring thyroxine (T4), triiodothyronine (T3), thyroid stimulating hormone (TSH), thyroid peroxidase (TPO), thyroglobulin (Tg), and lipid, inflammatory, and anthropometric biomarkers.
Results: Researchers anticipate observing increases in blood pressure (11 mm Hg in systolic and 5 mm Hg in diastolic) and improvements in biomarkers. This study aims to be the first randomized trial to explore the effects of celery on thyroid function. The findings will provide practitioners with clear nutritional protocols for managing HT patients.
COI STATEMENT
The authors declare no competing financial interests.
REFERENCES
1. Franco JS, Amaya-Amaya J, Anaya JM. Thyroid disease and autoimmune diseases. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, Levy RA, Cervera R, editors. Autoimmunity: From Bench to Bedside . Bogota (Colombia): El Rosario University Press; 2013 July 18. Chapter 30.
2. Whitfield M, Hollywood JB, Keister A. Nutritional management of Hashimoto's Thyroiditis: A case report. Adv Mind Body Med. 2024;28(2):22-27.
3. Stewart T, Rochon J, Lenfestey R, Wise P. Correlation of stress with outcome of radioiodine therapy for Graves' disease. J Nucl Med. 1985;26(6):592-599.
4. Dube SR, Fairweather D, Pearson WS, Felitti VJ, Anda RF, Croft JB. Cumulative childhood stress and autoimmune diseases in adults. Psychosom Med. 2009;71(2):243-250. doi:10.1097/PSY.0b013e3181907888
5. Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res. 2005;37(9):577-584. doi:10.1055/s-2005-870426
6. Sharif K, Watad A, Coplan L, et al. The role of stress in the mosaic of autoimmunity: An overlooked association. Autoimmun Rev. 2018;17(10):967-983. doi:10.1016/j.autrev.2018.04.005
7. Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the Regulation of Immune Functions. Prog Mol Biol Transl Sci. 2015;135:355-380. doi:10.1016/bs.pmbts.2015.08.001
8. Tsigos C, Kyrou I, Kassi E, Chrousos GP. . Stress: Endocrine Physiology and Pathophysiology. [Updated 2020 Oct 17]. In: Feingold KR, Anawalt B, Blackman MR, et al. editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000.
9. Kristensen B. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls. Dan Med J. 2016;63(2):B5177.
10. Ramos-Leví AM, Marazuela M. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms. Endocrinol Nutr. 2016;63(8):421-429. doi:10.1016/j.endonu.2016.04.003
11. Chávez MD, Tse HM. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases. Front Immunol. 2021;12:703972. doi:10.3389/fimmu.2021.703972
12. Rydzewska M, Jaromin M, Pasierowska IE, Stożek K, Bossowski A. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases. Thyroid Res. 2018;11:2. doi:10.1186/s13044-018-0046-9
13. DeGroot LJ. Graves’ Disease and the Manifestations of Thyrotoxicosis. [Updated 2015 Jul 11]. In: Feingold KR, Anawalt B, Blackman MR, et al. editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000.
14. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases [published correction appears in Microbiol Mol Biol Rev. 2012 Jun;76(2):496]. Microbiol Mol Biol Rev. 2011;75(1):50-83. doi:10.1128/MMBR.00031-10
15. Szanto I, Pusztaszeri M, Mavromati M. H2O2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel). 2019;8(5):126. doi:10.3390/antiox8050126
16. Gan XX, Zhong LK, Shen F, et al. Network pharmacology to explore the molecular mechanisms of Prunella vulgaris for treating Hashimoto's Thyroiditis. Front Pharmacol. 2021;12:700896.
doi:10.3389/fphar.2021.700896
17. Gluvic ZM, Obradovic MM, Sudar-Milovanovic EM, et al. Regulation of nitric oxide production in hypothyroidism. Biomed Pharmacother. 2020;124:109881. doi:10.1016/j.biopha.2020.109881
18. Peeters RP, Visser TJ. Metabolism of Thyroid Hormone.[Updated 2017 Jan 1] In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000.
19. Huang Y, Suguro R, Hu W, et al. Nitric oxide and thyroid carcinoma: A review. Front Endocrinol (Lausanne). 2023;13:1050656. doi:10.3389/fendo.2022.1050656
20. Maljaei MB, Moosavian SP, Mirmosayyeb O, Rouhani MH, Namjoo I, Bahreini A. Effect of Celery Extract on Thyroid Function; Is Herbal Therapy Safe in Obesity?. Int J Prev Med. 2019;10:55. doi:10.4103/ijpvm.IJPVM_209_17ijms20153614
21. Rouhi-Boroujeni H, Hosseini M, Gharipour M, Rouhi-Boroujeni H. Is herbal therapy safe in obesity? A case of Apium graveolens (Celery) induced hyperthyroidism. ARYA Atheroscler. 2016;12(5):248-249.
22. Salehi B, Venditti A, Frezza C, et al. Apium Plants: Beyond Simple Food and Phytopharmacological Applications. Applied Sciences. 2019; 9(17):3547. doi:10.3390/app9173547
23. Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1-10. doi:10.3945/ajcn.2008.27131
24. Sun J. D-Limonene: safety and clinical applications. Altern Med Rev. 2007;12(3):259-264.
25. Visser TJ, Kaptein E, Gijzel AL, de Herder WW, Ebner T, Burchell B. Glucuronidation of thyroid hormone by human bilirubin and phenol UDP-glucuronyltransferase isoenzymes. FEBS Lett. 1993;324(3):358-360.
26. Aschebrook-Kilfoy B, Shu XO, Gao YT, et al. Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai women's health study. Int J Cancer. 2013;132(4):897-904. doi:10.1002/ijc.27659
27. Kooti W, Daraei N. A Review of the Antioxidant Activity of Celery (Apium graveolens L). J Evid Based Complementary Altern Med. 2017;22(4):1029-1034. doi:10.1177/2156587217717415
28. World Health Organization. lARC monographs on the evaluation of carcinogenic risk to humans, Section D-Limonene. International Agency for Research on Cancer. 1993;56:135–162.
29. Sellami IH, Bettaieb I, Bourgou S, Dahmani R, Limam F, Marzouk B. Essential oil and aroma composition of leaves, stalks and roots of celery (Apium graveolens var. dulce) from Tunisia. J Ess Oil Res. 2012;24(6),513–521.
30. Anandakumar P, Kamaraj S, Vanitha MK. D-limonene: A multifunctional compound with potent therapeutic effects. J Food Biochem. 2021;45(1):e13566. doi:10.1111/jfbc.13566
31. Jeong JY, Bae SM, Yoon J, Jeong DH, Gwak SH. Effect of Using Vegetable Powders as Nitrite/Nitrate Sources on the Physicochemical Characteristics of Cooked Pork Products. Food Sci Anim Resour. 2020;40(5):831-843.
32. Hakim IA, Harris RB, Ritenbaugh C. Citrus peel use is associated with reduced risk of squamous cell carcinoma of the skin. Nutr Cancer. 2000;37(2):161-168. doi:10.1207/S15327914NC372_7
33. Yusni Y, Zufry H, Meutia F, Sucipto KW. The effects of celery leaf (apium graveolens L.) treatment on blood glucose and insulin levels in elderly pre-diabetics. Saudi Med J. 2018;39(2):154-160. doi:10.15537/smj.2018.2.21238
34. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters [published correction appears in Biostatistics. 2019 Apr 1;20(2):366. doi: 10.1093/biostatistics/kxy072]. Biostatistics. 2019;20(2):273-286. doi:10.1093/biostatistics/kxx069
35. Karwowska M, Kononiuk A. Nitrates/Nitrites in food risk for nitrosative stress and benefits. Antioxidants (Basel). 2020;9(3):241. doi:10.3390/antiox9030241
36. Zholdasbayev ME, Atazhanova GA, Musozoda S, Poleszak E. Prunella vulgaris L.: An Updated Overview of Botany, Chemical Composition, Extraction Methods, and Biological Activities. Pharmaceuticals (Basel). 2023;16(8):1106. doi:10.3390/ph16081106
37. Kolarovic J, Popovic M, Zlinská J, Trivic S, Vojnovic M. Antioxidant activities of celery and parsley juices in rats treated with doxorubicin. Molecules. 2010;15(9):6193-6204. doi:10.3390/molecules15096193
38. Shokri Z, Khoshbin M, Koohpayeh A, et al. Thyroid diseases: Pathophysiology and new hopes in treatment with medicinal plants and natural antioxidants zahra. Inter J of Green Pharm. 2018;12(3):S473.
39. Verma KJ, Jameel K. Studies on traditional treatment of thyroid by the Tribals of Chitrakoot District, Uttar Pradesh. Intl J Sci Res. 2014;3(10):2319-7064. https://www.ijsr.net/archive/v3i10/T0NUMTQyNDI=.pdf
40. Schmeltz LR, Blevins TC, Aronoff SL, et al. Anatabine supplementation decreases thyroglobulin antibodies in patients with chronic lymphocytic autoimmune (Hashimoto's) thyroiditis: a randomized controlled clinical trial. J Clin Endocrinol Metab. 2014;99(1):E137-E142. doi:10.1210/jc.2013-2951
41. Sun Y, Li M, Li X, et al. Characterization of Volatile Organic Compounds in Five Celery (Apium graveolens L.) Cultivars with Different Petiole Colors by HS-SPME-GC-MS. Int J Mol Sci. 2023;24(17):13343. doi:10.3390/ijms241713343
42. Magwa ML, Gundidza M, Coopoosamy RM, Mayekiso B. Chemical composition of volatile constituents from the leaves of Aloe ferox. African J of Biotech. 2006;5(18):1652-1654.
43. Sharifi-Rad J, Quispe C, Ayatollahi SA et al. Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma- Food Industry Applications. J of Food Qual. 2021;14. doi: 10.1155/2021/8985179.
44. Forouzanfar F, Bazzaz BS, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci. 2014;17(12):929-938.
45. Nickavar B, Mojab F, Javidnia K, Amoli MA. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Z Naturforsch C J Biosci. 2003;58(9-10):629-631. doi:10.1515/znc-2003-9-1004
46. Boutjagualt I, Hmimid F, Errami A, et al. Chemical composition and insecticidal effects of brown algae (Fucus spiralis) essential oil against Ceratitis capitata Wiedemann (Diptera: Tephritidae) pupae and adults. Biocatalysis and Agricultural Biotechnology. 2022:40.
47. Deng, G., Zhang, H., Xue, H., Chen, S., & Chen, X. Chemical Composition and Biological Activities of Essential Oil from the Rhizomes of Iris bulleyana. Agrc iSci in China. 2009;8(6):691-696. doi:10.1016/s1671-2927(08)60266-7
48. Khatib S, Faraloni C, Bouissane L. Exploring the Use of Iris Species: Antioxidant Properties, Phytochemistry, Medicinal and Industrial Applications. Antioxidants (Basel). 2022;11(3):526. doi:10.3390/antiox11030526
49. Rupa S, Saheli N, Sharmila P, et al. Biotechnology for propagation and secondary metabolite production in Bacopa monnieri. Appl Microbiol Biotechnol. 2022;106(5-6):1837-1854. doi:10.1007/s00253-022-11820-6
50. Yalcin H, Ozturk I, Hayta M, Sagdic O, Gumus T. Effect of gamma-irradiation on some chemical characteristics and volatile content of linseed. J Med Food. 2011;14(10):1223-1228. doi:10.1089/jmf.2010.0249
51. Vedashree M, Asha MR, Roopavati C, Naidu MM. Characterization of volatile components from ginger plant at maturity and its value addition to ice cream. J Food Sci Technol. 2020;57(9):3371-3380. doi:10.1007/s13197-020-04370-0
52. Ojha PK, Poudel DK, Rokaya A, Satyal R, Setzer WN, Satyal P. Comparison of Volatile Constituents Present in Commercial and Lab-Distilled Frankincense (Boswellia carteri) Essential Oils for Authentication. Plants (Basel). 2022;11(16):2134. doi:10.3390/plants11162134
53. Suresh, KD. On the High value Medicinal plant, Coleus forskohlii Briq.. Hygeia. 2013;5.
54. Nisar S, Hanif MA, Soomro K, Jilani MI, Kala CP. Coleus. In: Medicinal Plants of South Asia: Novel Sources for Drug Discovery,Elsevier eBooks; 2020:135-147. Chapter 11. doi:10.1016/b978-0-08-102659-5.00011-2
55. Nurzyńska-Wierdak R, Bogucka-Kocka A, Szymczak G. Volatile constituents of Melissa officinalis leaves determined by plant age. Nat Prod Commun. 2014 May;9(5):703-6. PMID: 25026727.
56. McGorrin RJ. Key Aroma Compounds in Oats and Oat Cereals. J Agric Food Chem. 2019;67(50):13778-13789. doi:10.1021/acs.jafc.9b00994
57. Lawson SK, Sharp LG, Satyal P, Setzer WN. Volatile Components of the Aerial Parts of Prunella Vulgaris L.(Lamiaceae). Am. J. Essent. Oils Nat. Prod. 2020;8(1):17-19.
58. Turan S, Kask K, Kanagendran A, et al. Lethal heat stress-dependent volatile emissions from tobacco leaves: what happens beyond the thermal edge?. J Exp Bot. 2019;70(18):5017-5030. doi:10.1093/jxb/erz255
59. Aboody MSA. Cytotoxic, antioxidant, and antimicrobial activities of Celery (Apium graveolens L.). Bioinformation. 2021;17(1):147-156. doi: 10.6026/97320630017147
60. Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol. 2023;14:1130689. doi: 10.3389/fendo.2023.1130689
61. Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci. 2018;19(8):2210. doi:10.3390/ijms19082210
62. Madani Kia T, Marshall JC, Murthy S. Stakeholder perspectives on adaptive clinical trials: a scoping review. Trials. 2020;21(1):539. doi:10.1186/s13063-020-04466-00